Bounds on the coefficients of the characteristic and minimal polynomials
نویسنده
چکیده
This note presents absolute bounds on the size of the coefficients of the characteristic and minimal polynomials depending on the size of the coefficients of the associated matrix. Moreover, we present algorithms to compute more precise inputdependant bounds on these coefficients. Such bounds are e.g. useful to perform deterministic chinese remaindering of the characteristic or minimal polynomial of an integer matrix.
منابع مشابه
Horadam Polynomials Estimates for $lambda$-Pseudo-Starlike Bi-Univalent Functions
In the present investigation, we use the Horadam Polynomials to establish upper bounds for the second and third coefficients of functions belongs to a new subclass of analytic and $lambda$-pseudo-starlike bi-univalent functions defined in the open unit disk $U$. Also, we discuss Fekete-Szeg$ddot{o}$ problem for functions belongs to this subclass.
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملTrajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملThe coefficients of differentiated expansions of double and triple Jacobi polynomials
Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0610136 شماره
صفحات -
تاریخ انتشار 2006